
Paper: How to get high resolution results from
sparse and coarsely sampled data.

Annie Cuyt, Wen-shin Lee

How to get high resolution results from sparse and coarsely sampled data.

Example 5.2.

Contents

• Script environment
• 5.2 Example where collisions occur

Script environment

This script depends on the random number generator state.

clear

close all

5.2 Example where collisions occur

In Table 2 we list the αi and λi of an exponential model, chosen in such a
way that the aliasing causes terms to collide. This enables us to illustrate the
workings of the technique explained in Section 4. Moreover, some of the terms

in the α
(1)
i will cancel and so there is an additional challenge to retrieve the

correct number of terms in α
(0)
i . The bandwidth is again Ω = 1000 and we

take ∆ = 1/Ω and r = 100. We add white Gaussian noise to the samples
with SNR=20 dB and start our computations. When subsampling, the 6 terms
collide into 3, as indicated in Figure 7 by the singular value decomposition of

H
(0)
N with N = 30, which reveals its numerical rank equal to 3. Actually, terms

1, 2 and 3 collide, as well as terms 5 and 6:

φ(trj) = (α1 + α2 + α3) exp(φ1jr∆) + α4 exp(φ4jr∆) + (α5 + α6) exp(φ5jr∆)

We recall that H
(0)
N is filled with the samples fjr, j = 0, ..., 59 and not with the

samples fj , j = 0, ..., 59.

r = 100;

params = params_from_table2;

signal = params.construct(10000);

signal.add_white_gaussian_noise(20,’db’);

1

signal_r = signal.select(1:r:59*r+1);

plot_signal_SVD(signal_r,’--plot-what’,’log’);

ylim([0.1,1000])

xlim([1,30])

title([’Figure 7: SVD of H_{30}^{(0)} for (1) with data from ’...

’table 2 and r = 100.’])

legend off

5 10 15 20 25 30
10-1

100

101

102

103

lo
g
(y

)

Figure 7: SVD of H
30
(0) for (1) with data from table 2 and r = 100.

We set up the 30× 30 generalized eigenvalue problem (2) with the samples frj ,
j = 0, ..., 59. After removing the terms too far from the unit circle, three terms
stand out:

bsolver = BSolverEsprit(’--nsamples’,60,’--ncols’,30,...

’--nrows’,31,’--nterms’,30);

csolver = CSolverVandermondeLS(’--nrows’,60,’--delta’,1);

b = bsolver.solve(signal_r);

b(abs(b)>1.05 | abs(b)<0.95) = [];

c = csolver.solve(signal_r,b);

params_subsampling_r = MultiExponentialParameters(1/r,{b,c},’normalized’);

plot3_base_terms(params_subsampling_r);

title(’Base terms close to unit circle.’)

2

0
0

0

5

1

10

0.5 1

a
b
s
(c

)
Base terms close to unit circle.

15

Im(b)

0.5

Re(b)

20

-0.5
-0.5

-1 -1

We only keep the three terms with the largest amplitude:

a_r = params_subsampling_r.amplitude();

params_subsampling_r.remove(filter_components(a_r,3));

plot3_base_terms(params_subsampling_r);

title(’Base terms with largest amplitude.’)

3

0
0

0

5

1

10

0.5 1

a
b
s
(c

)
Base terms with largest amplitude.

15

Im(b)

0.5

Re(b)

20

-0.5
-0.5

-1 -1

At this point we have not yet been able to recover the correct λi and αi for
the signal defined by the parameters in Table 2 (we have unearthed only 3
terms instead of 6) because of two reasons. First, the subsampling creates an
aliasing effect and second the aliasing causes frequencies to collide. As explained
in Section 4, we can disentangle the information in the collisions from more

values α
(1)
i (k), k = 1, 2, ..., where α

(0)
i = α

(1)
i (0), simply because the α

(1)
i (k)

are themselves linear combinations of exponentials. To this end we now choose
ρ = 133 and we set up the Vandermonde systems (14),

rho = 133;

csolver = CSolverVandermondeLS(’--nrows’,10,’--delta’,1);

K = 11;

alpha = zeros(K,3);

for k=1:K

signal_shifted = signal.select(1+k*rho:r:1+9*r+k*rho);

alpha(k,:) = csolver.solve(signal_shifted,...

params_subsampling_r.b);

end

4

In total so far 170 samples are used. A singular value analysis of the Hankel
matrices reveals the number of components that one can distinguish in and

consequently extract from the α
(1)
i (k) . The numerical ranks are 1, 2 and 3 (or

a permutation thereof as a result of the randomness of the noise).

alpha_signal = cell(1,3);

h = zeros(1,3);

for i=1:3

alpha_signal{i} = Signal(1,alpha(:,i));

h(i) = sum(svd(alpha_signal{i}.hankel(6))>20);

plot_signal_SVD(alpha_signal{i},’--n’,6,’--plot-what’,’lin’);

title(sprintf([’SVD ’,char(945),’_%d^{(1)}, h_%d=%d’],...

i,i,sum(h)));

legend off

end

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

20

40

60

80

100

120

140

y

1

(1)
, h

1
=3

5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30
y

2

(1)
, h

2
=4

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

y

3

(1)
, h

3
=6

For i = 1, 2, 3 the generalized eigenvalue problems reveal the λ
(1)
` = exp(φ`ρ∆),

` = hi, ..., hi+1 − 1. The respective Vandermonde systems with unknowns

αhi , ..., αhi+1−1 and right hand sides α
(1)
i (0), ..., α

(1)
i (11) reveal the αl , l =

hi, ..., hi+1 − 1 in (13). Again we retain only the hi+1 − hi components with
largest |αl|.

6

params_shifted = cell(1,3);

for i = 1:3

bcsolver = MultiExponentialSolver...

(BSolverEsprit(’--nsamples’,11,’--ncols’,5,...

’--nrows’,7,’--nterms’,h(i)),...

CSolverVandermondeLS(’--nrows’,11,’--delta’,1),...

’--nsamples’,11);

params_shifted{i} = bcsolver.solve(alpha_signal{i});

end

From the λ
(0)
` = exp(φ`r∆), l = hi, . . . , hi+1 − 1, i = 1, . . . , n0 and λ

(1)
` =

exp(φ`ρ∆), l = 1, . . . , n the imaginary part of φi can be recovered as indicated
in Lemma 2: with p1 = 4 and p2 = −3 we have p1r + p2ρ = 1.

p1 = 4;

p2 = -3;

alpha = [];

b_r = [];

b_rho = [];

for i = 1:3

alpha = [alpha,params_shifted{i}.c];

b_r = [b_r,repmat(params_subsampling_r.b(i),1,h(i))];

b_rho = [b_rho,params_shifted{i}.b];

end

b = b_r.^p1 .* b_rho.^p2;

params_final = MultiExponentialParameters(...

signal.sampling_frequency,...

{b,alpha}, ’normalized’);

plot3_base_terms(params,params_final,...

’--legend’,{’Original’,’Computed’});

7

0
0

0

5

1

10

0.5 1

a
b
s
(c

)

15

Im(b)

0.5

Re(b)

20

-0.5
-0.5

-1 -1

Original

Computed

8

