
Paper: Validated exponential analysis for har-
monic sounds.pdf

Matteo Briani, Annie Cuyt, and Wen-shin Lee

Validated exponential analysis for harmonic sounds

Example Figure 1

Contents

• Script environment
• Example Figure 1

Script environment

This script does not depend on the random number generator state.

clear

close all

Example Figure 1

To illustrate the validation aspect and how it is robust in the presence of outliers,
we consider 400 audio samples of the sustained part of an A4 note played by a
trumpet, corrupted by an outlier as shown in Figure 1.

[piece_total,Fs] = audioread(’trumpet-a4.wav’);

piece = piece_total(18003:18402);

piece(160) = 1;

signal = Signal(Fs,piece);

figure

plot(signal.samples(1:200))

title(’Figure 1: Corrupted trumpet recording.’)

set(gcf,’Position’,[50 100 1000 500])

1

0 20 40 60 80 100 120 140 160 180 200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Figure 1: Corrupted trumpet recording.

We put k = 4 and κ = 3 and compare the validation to a standard imple-
mentation of ESPRIT. As can be seen in the ESPRIT reconstruction in Figure
1 (top), it suffers from the presence of the outlier, as any parametric method
would. The new method, illustrated in Figure 1 (bottom), deals with k deci-
mated signals instead of the full signal and is more robust. In both approaches
we choose n = 20. While the ESPRIT algorithm deals with a Hankel matrix of
size 260 × 141, the cluster analysis only needs Hankel matrices of size 70 × 30.
When the recording is corrupted by an outlier, here only one of the k decimated
signals is affected. The decimated sample set that contains the outlier does
not contribute to the formed clusters. But the cluster algorithm still detects
clusters composed of at least k?1 eigenvalues at the correct locations λki . Since
one easily identifies the decimated signal that did not contribute to all clusters,
the equations coming from that set of samples and contributing to (4) for the
computation of the αi, are best removed from the Vandermonde system.

bsolver_esprit = BSolverEsprit(’--nsamples’,400,’--nrows’,260,...

’--ncols’,141,’--nterms’,20);

bsolver_vexpa = BSolverVexpa(’--bsolver’, BSolverEsprit(...

’--ncols’, 30, ...

’--nterms’,20) ...

, ’--csolver’, CSolverVandermondeLS ...

, ’--rate’ , 4 ...

, ’--shift’ , 3 ...

, ’--M’ , 15 ...

, ’--u-epsilon’, 0.01 ...

, ’--u-minpts’ , 3 ...

, ’--s-epsilon’, 0.05 ...

, ’--s-minpts’ , 2 ...

, ’--plot’ , false ...

, ’--time’ , false ...

);

2

csolver = CSolverVandermondeLS(’--nrows’,400,’--delta’,1);

B_esprit = bsolver_esprit.solve(signal);

C_esprit = csolver.solve(signal,B_esprit);

parms_esprit = MultiExponentialParameters(Fs,...

{B_esprit,C_esprit},’normalized’);

signal_esprit = parms_esprit.construct(400);

figure

plot(signal.samples(1:200))

hold on

plot(real(signal_esprit.samples(1:200)),’o’)

title([’Figure 1 (top,circles): Corrupted trumpet recording ’,...

’reconstructed by ESPRIT.’])

set(gcf,’Position’,[50 100 1000 500])

B_vexpa = bsolver_vexpa.solve(signal);

C_vexpa = csolver.solve(signal,B_vexpa);

parms_vexpa = MultiExponentialParameters(Fs,...

{B_vexpa,C_vexpa},’normalized’);

signal_vexpa = parms_vexpa.construct(400);

figure

plot(signal.samples(1:200))

hold on

plot(real(signal_vexpa.samples(1:200)),’+’)

title([’Figure 1 (bottom, crosses): Corrupted trumpet ’,...

’recording reconstructed by the new method.’])

set(gcf,’Position’,[50 100 1000 500])

0 20 40 60 80 100 120 140 160 180 200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Figure 1 (top,circles): Corrupted trumpet recording reconstructed by ESPRIT.

3

0 20 40 60 80 100 120 140 160 180 200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Figure 1 (bottom, crosses): Corrupted trumpet recording reconstructed by the new method.

4

