
Paper: Validated exponential analysis for har-
monic sounds.pdf

Matteo Briani, Annie Cuyt, and Wen-shin Lee

Validated exponential analysis for harmonic sounds

Illustration on a harmonic sound

Contents

• Script environment
• Illustration on a harmonic sound

Script environment

This script does not depend on the random number generator state.

clear

close all

Illustration on a harmonic sound

We consider a recorded sound of a guitar playing a D3 note corrupted by elec-
trical humming [32], downloaded from the website freesound.org. The samples
are collected at a rate of 48 kHz, for a duration of about 9 seconds in total (454
071 sample points tj). We apply the method described above to audio windows
of 1024 samples, with an overlap of 75% between the windows. The goal is to
extract the sinusoidal tracks [33] that form the guitar partials. We choose the
downsampling factor k = 5 and take κ = 7 (other combinations work as well, of
course). So in each window the downsampled set contains 204 samples, which
we use to extract ν = 61 generalized eigenvalues, leaving us to Hankel matrices
of size (at most) 143 × 61. For the solution of (7) we use the ESPRIT algo-
rithm [31]. After superimposing the k = 5 analyses of the downsampled audio
windows, a cluster analysis using DBSCAN is performed for each window, thus
retrieving the generalized eigenvalues λki most accurately.

To illustrate the regularization effect on the rectangular 143 × 61 analogon of
(2) from choosing k > 1, we show in Figure 2 the distribution of the generalized
eigenvalues λi, i = 1, . . . , n of the full not downsampled 60-th windows starting
at t15104 opposed to that of the λ5i , i = 1, . . . , n of the downsampled set of
samples from the same window.

In the wake of the shift strategy discussed in Section 5 (we merely took h =
1, . . . , 24 < H), the value λκi can further be improved. After performing the

1

cluster analysis on the superimposed results for λκi , we can look at the λκi
associated with each of these and compute their center of gravity (disregarding
those that fall out of scope). Note that for the λκi no separate cluster analysis
needs to be performed. The latter is illustrated in Figure 3.

Since the technique is being applied to a harmonic sound, an additional step
can be performed to estimate the base frequency (per window) more accurately.
Once the stable frequencies φi, i = 1, . . . , n are retrieved, we look for a harmonic
relation between them. We divide every detected harmonic partial \phi i$ by
the integers j = 1, . . . , 40 (which is the largest number of partials expected) and
we add these quotients to the discovered φi, in this way creating a new larger
cluster at the base frequency, which we call φ1. The center of gravity of this
larger cluster estimates the lowest partial of the harmonics. Using this estimate
of the base frequency φ1, all higher harmonic partials jφ1, j =?60, . . . , 60 are
reconstructed and substituted in one large rectangular 512× 121 Vandermonde
system (4), which serves as the coefficient matrix for the computation of the αi,
i = 1, . . . , 121.

While moving from one window to the next over the course of the 9 seconds,
the higher harmonic partials that are detected become weaker and fewer. So n
decreases with time. We refer to Figure 4, where we again show the generalized
eigenvalues λi and λ5i , before and after regularization, now for one of the middle
audio windows. Fortunately, the number of partials remains large enough during
the whole audio fragment to rebuild the harmonics as described. Since the final
reconstructed guitar sound only makes use of the φi from the stable generalized
eigenvalues, the reconstruction does not suffer from the electrical hum anymore.

[piece_total,Fs] = audioread(’guitar-d3.wav’);

N = 1024;

overlap = 0.75;

step = (1-overlap)*N;

nwindows = floor((length(piece_total)-1024)/step)+1;

piece_recon = zeros(1,(nwindows-1)*step+N);

div = [ones(1,step), repmat(2,1,step), repmat(3,1,step),...

repmat(4,1,(nwindows-3)*step), ...

repmat(3,1,step), repmat(2,1,step), ones(1,step)];

for k = 1:nwindows

if ~mod(k,25)

fprintf(’\n Window %i of %i’,k,nwindows)

end

signal = Signal(Fs,piece_total((k-1)*step+1:(k-1)*step+N));

2

bsolver = BSolverVexpa(’--bsolver’, BSolverEsprit(...

’--ncols’, 61, ...

’--nterms’,61) ...

, ’--csolver’, CSolverVandermondeLS ...

, ’--rate’ , 5 ...

, ’--shift’ , 7 ...

, ’--M’ , 24 ...

, ’--u-epsilon’, 0.0005 ...

, ’--u-minpts’ , 4 ...

, ’--s-epsilon’, 0.001 ...

, ’--s-minpts’ , 4 ...

, ’--plot’ , false ...

, ’--time’ , false ...

);

if k == 60

bsolver = BSolverVexpa(’--bsolver’, BSolverEsprit(...

’--ncols’, 61, ...

’--nterms’,61) ...

, ’--csolver’, CSolverVandermondeLS ...

, ’--rate’ , 5 ...

, ’--shift’ , 7 ...

, ’--M’ , 24 ...

, ’--u-epsilon’, 0.0005 ...

, ’--u-minpts’ , 4 ...

, ’--s-epsilon’, 0.001 ...

, ’--s-minpts’ , 4 ...

, ’--plot’ , true ...

, ’--time’ , false ...

);

end

csolver = CSolverVandermondeLS(’--nrows’,512,’--delta’,1);

B = bsolver.solve(signal);

B = B./abs(B);

if k == 60

for j = 1:numel(B)

close(j+2);

end

figure(1)

title([’Figure 3 (left): Clusters of \lambda_i^5 ’,...

’values.’])

figure(2)

3

title([’Figure 3 (right): Clusters of \lambda_i^7 ’,...

’values.’])

plot_base_terms(B);

title([’Figure 2 (left): Generalized eigenvalues ’,...

’\lambda_i from the 60-th window.’])

plot_base_terms(B.^5);

title([’Figure 2 (right): Generalized eigenvalues ’,...

’\lambda_i^5 from the 60-th window.’])

elseif k == 885

plot_base_terms(B);

title([’Figure 4 (left): Generalized eigenvalues ’,...

’\lambda_i from a middle window.’])

plot_base_terms(B.^5);

title([’Figure 4 (right): Generalized eigenvalues ’,...

’\lambda_i^5 from a middle window.’])

end

if numel(B) > 1

freq = imag(log(B)*Fs)/(2*pi);

minfreq = min(freq(freq > 10));

freq_partials = freq./((1:40)’);

freq_partials = freq_partials(:);

freq_partials(freq_partials < max([0.9*minfreq,0])) = [];

[IDX,~] = DBSCANm(freq_partials,1,ceil(0.35*numel(B)));

IDXj = zeros(1,max(IDX));

for j = 1:max(IDX)

IDXj(j) = sum(IDX==j);

end

IDXj(IDXj > numel(B)/2) = 0;

[~,I] = max(IDXj);

if isempty(I) || IDXj(I) == 0

B = 0;

C = 0;

else

freq1 = mean(abs(freq_partials(IDX==I)));

B = exp(2*pi*1i*(freq1*(-60:60))/Fs);

C = csolver.solve(signal,B);

end

else

B = 0;

C= 0;

end

params = MultiExponentialParameters(Fs,{B,C},’normalized’);

signal_recon = params.construct(N);

piece_recon((k-1)*step+1:(k-1)*step+N) = ...

4

piece_recon((k-1)*step+1:(k-1)*step+N) + ...

real(signal_recon.samples);

end

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 3 (left): Clusters of
i
5 values.

cluster1 (#=5)

cluster2 (#=5)

cluster3 (#=5)

cluster4 (#=5)

cluster5 (#=5)

cluster6 (#=5)

cluster7 (#=5)

cluster8 (#=5)

cluster9 (#=5)

cluster10 (#=5)

cluster11 (#=4)

cluster12 (#=4)

cluster13 (#=4)

cluster14 (#=4)

cluster15 (#=4)

cluster16 (#=4)

cluster17 (#=4)

cluster18 (#=4)

cluster19 (#=4)

cluster20 (#=4)

cluster21 (#=4)

cluster22 (#=4)

cluster23 (#=4)

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 3 (right): Clusters of
i
7 values.

cluster1 (#=5)

cluster2 (#=5)

cluster3 (#=5)

cluster4 (#=5)

cluster5 (#=5)

cluster6 (#=5)

cluster7 (#=5)

cluster8 (#=5)

cluster9 (#=5)

cluster10 (#=5)

cluster11 (#=4)

cluster12 (#=4)

cluster13 (#=4)

cluster14 (#=4)

cluster15 (#=4)

cluster16 (#=4)

cluster17 (#=4)

cluster18 (#=4)

cluster19 (#=4)

cluster20 (#=4)

cluster21 (#=4)

cluster22 (#=4)

cluster23 (#=4)

5

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 2 (left): Generalized eigenvalues
i
 from the 60-th window.

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 2 (right): Generalized eigenvalues
i
5 from the 60-th window.

6

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 4 (left): Generalized eigenvalues
i
 from a middle window.

-1 -0.5 0 0.5 1

Re(b)

-1

-0.5

0

0.5

1

Im
(b

)

Figure 4 (right): Generalized eigenvalues
i
5 from a middle window.

7

