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Abstract

What do the epsilon-algorithm, Padé approximants, Gaussian quadrature rules,
exponential analysis and tensor decomposition have in common? Hankel matri-
ces! While Padé approximants belong to rational approximation theory, Gaus-
sian quadrature rules are high order numerical integration rules derived from
orthogonal polynomial families, exponential analysis is a parametric spectral
analysis tool and tensor decomposition is situated in mathematical data analy-
sis.

Between all these applications, computational tools (the qd-algorithm, poly-
nomial interpolation, generalized eigenvalue solvers, . . .) and mathematical the-
orems (convergence results for Padé approximants, Froissart doublet behaviour,
computational complexity analysis, . . .) can now be exchanged because it is pos-
sible to rewrite one problem statement in the form of another. This opens up a
whole new world to explore.

The formally orthogonal Hadamard polynomials introduced in Section 1 are
related to Padé denominator polynomials in Section 2. The Hadamard poly-
nomial zeroes form the nodes of Gaussian quadrature rules in Section 3 and in
Section 4 the Hadamard polynomial equals the so-called Prony polynomial of
exponential analysis. The zeroes are also the nodes of the Vandermonde struc-
tured factor matrices in Section 5 in the decomposition of a higher order tensor
with Hankel structured slices.

All of the above have been generalized to higher dimensions, with the preser-
vation of several connections, as briefly discussed in Section 6.
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Introduction

Research in numerical approximation theory introduces one to many great math-
ematicians, such as the already mentioned Hankel, Sylvester, Schweins, Aitken,
Wynn, Rutishauser, de Prony, Padé, Henrici, Brezinski, to name just a few.
They are the giants on whose shoulders we can stand.

The rich world of determinant identities leads to Wynn’s epsilon-algorithm
and gives rise to several generalizations when moving to more general concepts
than complex numbers, such as vectors, multivariate functions, matrices, ten-
sors, nonlinear operators, etc.

Less well-known but equally important are the connections between several
seemingly disjoint topics. For instance, the connection between sparse inter-
polation studied in the computer algebra community and Padé approximation,
was already pointed out in [23] by connecting to the method of de Prony [18],
which is at the basis of the parametric spectral analysis method called exponen-
tial analysis. The connection with formal orthogonal polynomials, Padé-type
approximation and Gaussian quadrature rules are further elaborated by Brezin-
ski in [4]. More recently, we completed the circle by relating all of the above to
tensor decomposition methods [11] and establishing several multivariate gener-
alizations, thereby preserving as many connections as possible.

Let us now discuss the different problem statements one by one, pointing
out the relationships as we go along. Only at the end we briefly touch upon
their multivariate versions.

1 Classical orthogonal polynomials

We denote C[z] for the linear space of polynomials in the variable z with complex
coefficients and define the linear functional λ : C[z] → C which associates the
number ei with the monomial ti, so

λ(ti) = ei, i = 0, 1, . . .

Formally we can write
∞∑
i=0

eiz
i = λ

(
1

1− tz

)
.

The sequence of polynomials Vm(z),m = 0, 1, . . . given by

Vm(z) =

m∑
j=0

bm−jz
j = bm + bm−1z + . . .+ b0z

m, b0 6= 0

and satisfying the conditions

λ(tiVm(t)) = 0, i = 0, . . . ,m− 1, (1)

is a sequence of polynomials orthogonal with respect to the linear functional λ
[4, p. 40] since (1) implies that

λ(Vk(t)Vm(t)) = 0, k 6= m.
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Let us further define the Hankel determinants

H(s)
m =

∣∣∣∣∣∣∣∣∣∣
es . . . es+m−1

...
...

es+m−1 . . . es+2m−2

∣∣∣∣∣∣∣∣∣∣
, H

(s)
0 = 1, s = 0, 1, . . .

The linear functional λ is called definite if

H(0)
m 6= 0, m = 0, 1, . . .

From (1), the linear system

m∑
j=0

ei+jbm−j = 0, i = 0, . . . ,m− 1 (2)

is obtained directly, which allows to compute the orthogonal polynomial Vm(z)
up to a normalization. If λ is definite then the linear system of equations (2)
has maximal rank. With b0 = 1, the monic orthogonal polynomial Vm(z) is
then given by

Vm(z) =
1

H
(0)
m

∣∣∣∣∣∣∣∣∣
e0 . . . em−1 em
...

...
em−1 . . . e2m−1

1 z . . . zm

∣∣∣∣∣∣∣∣∣ , V0(z) = 1.

In [19] the orthogonal polynomial Vm(z) is called the formally orthogonal Hadamard
polynomial.

2 Connection with Padé approximation

Let at first Vm(z) be general and not necessarily satisfy (1). For a given Vm(z)
we define the associated polynomials Wm−1(z) of degree m− 1 by [4, p. 10]

Wm−1(z) : = λ

(
Vm(z)− Vm(t)

z − t

)
= λ

(
bm−1 + bm−2(z + t) + . . .+ b0(zm−1 + zm−2t+ . . .+ ztm−2 + tm−1)

)
.

We also define the reverse polynomials

Ṽm(z) := zmVm(1/z)

W̃m−1(z) := zm−1Wm−1(1/z)

which jointly satisfy [4, p. 11]

∞∑
i=0

eiz
i − W̃m−1(z)i

Ṽm(z)
=

∞∑
i=m

diz
i. (3)
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The rational function W̃m−1(z)/Ṽm(z) is called a Padé-type approximant of
degree m− 1 in the numerator and m in the denominator to the formal power
series

F (z) :=

∞∑
i=0

eiz
i. (4)

Now let Vm(z) satisfy the orthogonality conditions (1). Then (3) improves to
[4, pp. 34–35]

∞∑
i=0

eiz
i − W̃m−1(z)

Ṽm(z)
=

∞∑
i=2m

diz
i. (5)

The rational function W̃m−1(z)/Ṽm(z) is then called a Padé approximant of
degree m−1 in the numerator and m in the denominator to the series F (z) and
often denoted by [m− 1/m]F (z). So the reverse of the Padé denominator

Ṽm(z) =

m∑
j=0

bm−jz
m−j ,

which can be computed from the linear system (2), is the orthogonal polynomial
Vm(z). After computing its coefficients bj , the Padé numerator

W̃m(z) =

m−1∑
j=0

ajz
j

can be obtained from the linear system

m∑
j=0

ei−jbj = ai, i = 0, . . . ,m− 1,

where ei := 0 for i < 0.

3 Connection with Gaussian quadrature

In the sequel of this section we consider z as a parameter and t as the variable.
Also the numbers ei are classical moments, given on the standard interval [−1, 1]
for the weight function w(z),

ei :=

∫ 1

−1

w(t)ti dt,

∫ 1

−1

w(t) dt > 0.

The formal power series F (z) defined in (4) then equals

F (z) = λ

(
1

1− tz

)
=

∫ 1

−1

w(t)
1

1− tz
dt.
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Let z
(m)
i , i = 1, . . . ,m denote the zeroes of Vm(z), so with b0 = 1 we have

Vm(z) = (z − z(m)
1 ) · · · (z − z(m)

m ).

Consider the Hermite interpolating polynomial pm−1(t; z) for 1/(1−tz) through

the interpolation points z
(m)
1 , . . . , z

(m)
m , so

pm−1(t; z) =

m∑
i=1

(
1

1− z(m)
i z

)
Vm(t)

(t− z(m)
i )V ′m(z

(m)
i )

=

m∑
i=1

(
1

1− z(m)
i z

)
Vm(t)− Vm(z

(m)
i )

(t− z(m)
i )V ′m(z

(m)
i )

.

Then the approximation

λ

(
1

1− tz

)
≈ λ (pm−1(t; z))

=

m∑
i=1

λ

(
Vm(t)− Vm(z

(m)
i )

(t− z(m)
i )V ′m(z

(m)
i )

)
1

1− z(m)
i z

is a quadrature rule for the integration of 1/(1− tz), with nodes z
(m)
1 , . . . , z

(m)
m

and weights

A
(m)
i = λ

(
Vm(t)− Vm(z

(m)
i )

(t− z(m)
i )V ′m(z

(m)
i )

)

=
Wm−1(z

(m)
i )

V ′m(z
(m)
i )

.

In other words

λ

(
1

1− tz

)
≈

m∑
i=1

A
(m)
i

1

1− z(m)
i z

.

When the z
(m)
i , i = 1, . . . ,m are all distinct, then the quadrature rule is a

Gaussian rule guaranteeing correctness up to an including polynomials of degree
2m− 1: for q(z) ∈ C[z] of degree 2m− 1 we have

λ (q(t)) =

∫ 1

−1

q(t) dt =

m∑
i=1

A
(m)
i q(z

(m)
i ).

So the nodes and weights of a formal m-point Gaussian quadrature rule are
closely connected with the orthogonal and associated polynomials Vm(z) and
Wm−1(z).
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4 Connection with exponential analysis

Let us consider a different situation, where the ei follow a very structured rule,

ei = λ(ti) =

m∑
j=1

αjΦ
i
j , αj ,Φj ∈ C. (6)

Here the Φj , j = 1, . . . ,m are (for simplicity) assumed to be mutually distinct
and given by Φj = exp(2πφj/M) with φj , j = 1, . . . ,m ∈ C and M satisfying
|=(φj)| < M/2 to avoid periodicity problems [22, 14].

Because of the nature of the ei, the Hankel matrices

H(s)
m =


es . . . es+m−1

...
...

es+m−1 . . . es+2m−2

 , H(s)
0 = 1, s = 0, 1, . . .

can be factorized as [13]
H(s)
m = VmDαDsΦVTm (7)

where Vm is the Vandermonde matrix

Vm =
(
Φi−1
j

)m
i,j=1

and Dα and DΦ are m×m diagonal matrices filled with the vectors (α1, . . . , αm)
and (Φ1, . . . ,Φm). In addition, the power series F (z) given by (4) reduces to
the rational function

F (z) =

∞∑
i=0

λ(ti)zi

=

∞∑
i=0

 m∑
j=1

αjΦ
i
j

 zi =

m∑
j=1

αj
1− Φjz

.

Because of the consistency property for Padé approximants [4, p. 36], the de-
nominator polynomials of F (z) and [m− 1/m]F (z) must equal

(1− Φ1z) · · · (1− Φmz)

which in its turn equals Ṽm(z). The zeroes z
(m)
i , i = 1, . . . ,m of Vm(z), which are

the Gaussian quadrature nodes in the previous section, are in this exponentially

structured special case given by z
(m)
i = Φi. In the literature, the polynomial

Vm(z) is called the Prony polynomial [20]: its zeroes Φi are the atoms in the
exponential sum (6).

In case the φj and αj are given, then the ei can be computed. In the inverse
case, where the ei are somehow known or measured, the φj and αj can be

6



extracted from the e0, . . . , e2m−1 as follows. Because of (7), the Φj are the
generalized eigenvalues [21] of

H(1)
m vj = ΦjH(0)

m vj

where the vj , j = 1, . . . ,m are the right generalized eigenvectors. The constraint
|=(φj)| < M/2 now allows to extract the complex value φj unambiguously from
the generalized eigenvalue Φj . With the Φj known, the linear coefficients αj are
obtained from the Vandermonde system of interpolation conditions

m∑
j=1

αjΦ
i
j = ei, i = s, . . . , s+m− 1, 0 ≤ s ≤ m.

The extraction of the nonlinear parameters φj and the linear coefficients αj
from the equidistant samples

ei =

m∑
j=1

αj exp(2π(i/M)φj), i = 0, . . . , 2m− 1

is a frequent problem statement in signal processing.

5 Connection with tensor decomposition

With the ei given by (6), we fill an order n tensor T ∈ Cm1×···×mn where

2 ≤ mk ≤ m, 1 ≤ k ≤ n, 3 ≤ n ≤ 2m− 1,
n∑
k=1

mk = 2m+ n− 1

and
Ti1,...,in := ei1+···+in−n, 1 ≤ ik ≤ mk. (8)

The tensor of smallest order n = 3 is of size m ×m × 2 and the one of largest
order n = 2m−1 is symmetric and of size 2×· · ·×2. For the sequel we generalize
the definition of the square Hankel matrix above to cover rectangular Hankel
structured matrices

H(s)
m1,m2

=


es es+1 . . . es+m2−1

es+1 es+2 . . . es+m2

...
...

. . .
...

es+m1−1 es+m1
. . . es+m1+m2−2

 .

The tensor slices T·,·,i3,...,in of our tensor T then equal

T·,·,i3,...,in = H(i3+···+in−n+2)
m1,m2
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and so are Hankel structured. The tensor T decomposes as

T =

m∑
j=1

αj


1

Φj
...

Φm1−1
j

 ◦ · · · ◦


1
Φj
...

Φmn−1
j

 , (9)

where ◦ denotes the outer product and the Φj are mutually distinct. The de-
composition (9) is easily verified by checking the element at position (i1, . . . , in)
in the left hand side and the right hand side of (9). The factor matrices are the
rectangular Vandermonde structured matrices

Vmk,m =
(
Φi−1
j

)mk,m

i=1,j=1
, 1 ≤ k ≤ n.

Because of the Vandermonde structure of the factor matrices with mk ≤ m, k =
1, . . . , n, their Kruskal rank equals mk for all k. Since m1+· · ·+mn = 2m+n−1
we find that the sum of the Kruskal ranks of the n factor matrices of the rank
m tensor T is bounded below by 2m + n − 1. Hence the Kruskal condition is
satisfied and the unicity of the decomposition is guaranteed.

6 Multidimensional generalizations

The concept of the formally orthogonal polynomial Vm(z) is generalized in [10],
for different radial weight functions, to so-called spherical orthogonal polynomi-
als. The latter differ from several other definitions of multivariate orthogonal
polynomials, in that they preserve the connections laid out here in the Sections
2 and 3. At the heart are again Hankel matrices and determinants, but now
parameterized [9, 17].

Homogeneous multivariate Padé approximants, as defined in [6, 7], can be
computed using the epsilon-algorithm [5] and can also be obtained from the
spherical orthogonal polynomials in a similar way as described here in Section 2
[1, 2]. The homogeneous definition satisfies a very strong projection property,
in the sense that this multivariate Padé approximant reduces to the univariate
Padé approximant on every one-dimensional subspace.

A whole lot of Gaussian cubature rules on the disk can be united in a single
approach when developing the rules from these spherical orthogonal polynomials
[3]. What’s more, the nodes and weights of such Gaussian cubature rules on
the disk can be obtained as the solution of a multivariate Prony-like system of
interpolation conditions [3]. And this brings us to the next connection.

The result that an m-term exponential analysis problem of the form

m∑
j=1

αj exp(2π(i/M)φj) = ei, i = 0, . . . , 2m− 1

can be solved uniquely for the αj , φj , j = 1, . . . ,m from only 2m samples ei
was only recently generalized to the d-dimensional setting [15] in its full flavour.
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The equations

m∑
j=1

αj exp(〈xi, φj〉) = ei, φjinCd, xi ∈ Rd,

can be solved for the vectors φj and the coefficients αj from a mere (d + 1)m
samples collected at vectors xi. This number of samples is also the theoretical
minimal number [15]. While the 2m samples in the one-dimensional problem
are collected uniformly, the (d+ 1)m samples in the d-dimensional problem are
located on d parallel lines constructed from a basis in Rd.

This multivariate Prony generalization is in its turn closely connected to both
multivariate and multidimensional generalizations of the Padé approximant con-
cept and to various tensor decompositions [16, 11]. Among other things, we also
mention an algorithm to locate zeroes of the homogeneous Padé denominator [8],
which, as we know from Section 4, are related to the atoms in the exponential
analysis problem. The detailed interpretation of the output of this algorithm
is through the convergence result for homogeneous Padé approximants given in
[12].
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[4] C. Brezinski. Padé type approximation and general orthogonal polynomials.
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