
7
Systems of Linear Equations

A simple electrical network contains a number of resistances and a single
source of electromotive force (a battery) as shown in Figure 7.1. Using
Kirchhoff’s laws and Ohm’s law, we can write a system of linear equations
that govern this circuit. If x1, x2, x3, and x4 are the loop currents as shown,
then the equations are






15x1 − 2x2 − 6x3 = 300
−2x1 + 12x2 − 4x3 − x4 = 0
−6x1 − 4x2 + 19x3 − 9x4 = 0

− x2 − 9x3 + 21x4 = 0

Systems of equations like this, even those that contain hundreds of un-
knowns, can be solved by using the methods developed in this chapter.
The solution to the preceding system is

x1 = 26.5 x2 = 9.35 x3 = 13.3 x4 = 6.13

FIGURE 7.1
Electrical
network

x3 x4

x2

4 ! 1 !

5 !2 !

11 !6 !
9 !

7 !

x1300 volts

7.1 Naive Gaussian Elimination
One of the fundamental problems in many scientific and engineering applications is to
solve an algebraic linear system Ax = b for the unknown vector x when the coefficient
matrix A and right-hand side vector b are known. Such systems arise naturally in various

245

246 Chapter 7 Systems of Linear Equations

applications, such as approximating nonlinear equations by linear equations or differential
equations by algebraic equations. The cornerstone of many numerical methods for solving
a variety of practical computational problems is the efficient and accurate solution of linear
systems. The system of linear algebraic equations Ax = b may or may not have a solution,
and if it has a solution, it may or may not be unique. Gaussian elimination is the standard
method for solving the linear system by using a calculator or a computer. This method is
undoubtedly familiar to most readers, since it is the simplest way to solve a linear system
by hand. When the system has no solution, other approaches are used, such as linear least
squares, which is discussed in Chapter 14. In this chapter and most of the next one, we
assume that the coefficient matrix A is n × n and invertible (nonsingular).

In a pure mathematical approach, the solution to the problem Ax = b is simply x =
A−1b, where A−1 is the inverse matrix. But in most applications, it is advisable to solve the
system directly for the unknown vector x rather than explicitly computing the inverse matrix.

In applied mathematics and in many applications, it can be a daunting task for even
the largest and fastest computers to solve accurately extremely large systems involving
thousands or millions of unknowns. Some of the questions are the following: How do we
store such large systems in the computer? How do we know that the computed answers are
correct? What is the precision of the computed results? Can the algorithm fail? How long
will it take to compute answers? What is the asymptotic operation count of the algorithm?
Will the algorithm be unstable for certain systems? Can instability be controlled by pivoting?
(Permuting the order of the rows of the matrix is called pivoting.) Which strategy of pivoting
should be used? How do we know whether the matrix is ill-conditioned and whether the
answers are accurate?

Gaussian elimination transforms a linear system into an upper triangular form, which
is easier to solve. This process, in turn, is equivalent to finding the factorization A =
LU , where L is a unit lower triangular matrix and U is an upper triangular matrix. This
factorization is especially useful when solving many linear systems involving the same
coefficient matrix but different right-hand sides, which occurs in various applications.

When the coefficient matrix A has a special structure such as being symmetric, positive
definite, triangular, banded, block, or sparse, the general approach of Gaussian elimination
with partial pivoting needs to be modified or rewritten specifically for the system. When the
coefficient matrix has predominantly zero entries, the system is sparse and iterative methods
can involve much less computer memory than Gaussian elimination. We will address many
of these issues in this chapter and the next one.

Our objective in this chapter is to develop a good program for solving a system of n
linear equations in n unknowns:






a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1

a21x1 + a22x2 + a23x3 + · · · + a2n xn = b2

a31x1 + a32x2 + a33x3 + · · · + a3n xn = b3

...
...

...
...

...

ai1x1 + ai2x2 + ai3x3 + · · · + ain xn = bi

...
...

...
...

...

an1x1 + an2x2 + an3x3 + · · · + ann xn = bn

(1)

7.1 Naive Gaussian Elimination 247

In compact form, this system can be written simply as

n∑

j=1

ai j x j = bi (1 ! i ! n)

In these equations, ai j and bi are prescribed real numbers (data), and the unknowns x j are
to be determined. Subscripts on the letter a are separated by a comma only if necessary for
clarity—for example, in a32,75 but not in ai j .

A Larger Numerical Example
In this section, the simplest form of Gaussian elimination is explained. The adjective naive
applies because this form is not usually suitable for automatic computation unless essential
modifications are made, as in Section 7.2. We illustrate naive Gaussian elimination with a
specific example that has four equations and four unknowns:






6x1 − 2x2 + 2x3 + 4x4 = 16
12x1 − 8x2 + 6x3 + 10x4 = 26
3x1 − 13x2 + 9x3 + 3x4 = −19

−6x1 + 4x2 + x3 − 18x4 = −34

(2)

In the first step of the elimination procedure, certain multiples of the first equation are
subtracted from the second, third, and fourth equations so as to eliminate x1 from these
equations. Thus, we want to create 0’s as coefficients for each x1 below the first (where 12,
3, and −6 now stand). It is clear that we should subtract 2 times the first equation from the
second. (This multiplier is simply the quotient 12

6 .) Likewise, we should subtract 1
2 times the

first equation from the third. (Again, this multiplier is just 3
6 .) Finally, we should subtract

−1 times the first equation from the fourth. When all of this has been done, the result is






6x1 − 2x2 + 2x3 + 4x4 = 16
− 4x2 + 2x3 + 2x4 = −6
− 12x2 + 8x3 + x4 = −27

2x2 + 3x3 − 14x4 = −18

(3)

Note that the first equation was not altered in this process, although it was used to produce
the 0 coefficients in the other equations. In this context, it is called the pivot equation.

Notice also that Systems (2) and (3) are equivalent in the following technical sense:
Any solution of (2) is also a solution of (3), and vice versa. This follows at once from the
fact that if equal quantities are added to equal quantities, the resulting quantities are equal.
One can get System (2) from System (3) by adding 2 times the first equation to the second,
and so on.

In the second step of the process, we mentally ignore the first equation and the first
column of coefficients. This leaves a system of three equations with three unknowns. The
same process is now repeated using the top equation in the smaller system as the current
pivot equation. Thus, we begin by subtracting 3 times the second equation from the third.
(The multiplier is just the quotient −12

−4 .) Then we subtract − 1
2 times the second equation

248 Chapter 7 Systems of Linear Equations

from the fourth. After doing the arithmetic, we arrive at





6x1 − 2x2 + 2x3 + 4x4 = 16
− 4x2 + 2x3 + 2x4 = −6

2x3 − 5x4 = −9
4x3 − 13x4 = −21

(4)

The final step consists in subtracting 2 times the third equation from the fourth. The result is





6x1 − 2x2 + 2x3 + 4x4 = 16
− 4x2 + 2x3 + 2x4 = −6

2x3 − 5x4 = −9
− 3x4 = −3

(5)

This system is said to be in upper triangular form. It is equivalent to System (2).
This completes the first phase (forward elimination) in the Gaussian algorithm. The

second phase (back substitution) will solve System (5) for the unknowns starting at the
bottom. Thus, from the fourth equation, we obtain the last unknown

x4 = −3
−3

= 1

Putting x4 = 1 in the third equation gives us

2x3 − 5 = −9

and we find the next to last unknown

x3 = −4
2

= −2

and so on. The solution is

x1 = 3 x2 = 1 x3 = −2 x4 = 1

Algorithm
To simplify the discussion, we write System (1) in matrix-vector form. The coefficient
elements ai j form an n × n square array, or matrix. The unknowns xi and the right-hand
side elements bi form n ×1 arrays, or vectors.∗ (See Appendix D for linear algebra notation
and concepts.) Hence, we have





a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...

ai1 ai2 ai3 · · · ain
...

...
...

...

an1 an2 an3 · · · ann









x1

x2

x3
...

xi
...

xn





=





b1

b2

b3
...

bi
...

bn





(6)

∗To save space, we occasionally write a vector as [x1, x2, . . . , xn]T , where the T stands for the transpose. It tells
us that this is an n × 1 array or vector and not 1 × n, as would be indicated without the transpose symbol.

7.1 Naive Gaussian Elimination 249

or

Ax = b

Operations between equations correspond to operations between rows in this notation. We
shall use these two words interchangeably.

Now let us organize the naive Gaussian elimination algorithm for the general system,
which contains n equations and n unknowns. In this algorithm, the original data are over-
written with new computed values. In the forward elimination phase of the process, there
are n − 1 principal steps. The first of these steps uses the first equation to produce n − 1
zeros as coefficients for each x1 in all but the first equation. This is done by subtracting
appropriate multiples of the first equation from the others. In this process, we refer to the
first equation as the first pivot equation and to a11 as the first pivot element. For each of
the remaining equations (2 ! i ! n), we compute






ai j ← ai j −
(

ai1

a11

)
a1 j (1 ! j ! n)

bi ← bi −
(

ai1

a11

)
b1

The symbol ← indicates a replacement. Thus, the content of the memory location allocated
to ai j is replaced by ai j − (ai1/a11)a1 j , and so on. This is accomplished by the following
line of pseudocode:

ai j ← ai j − (ai1/a11)a1 j

Note that the quantities (ai1/a11) are the multipliers. The new coefficient of x1 in the i th
equation will be 0 because ai1 − (ai1/a11)a11 = 0.

After the first step, the system will be of the form




a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 a23 a33 · · · a3n
...

...
...

...

0 ai2 ai3 · · · ain
...

...
...

...

0 an2 an3 · · · ann









x1

x2

x3
...

xi
...

xn





=





b1

b2

b3
...

bi
...

bn





From here on, we will not alter the first equation, nor will we alter any of the coefficients
for x1 (since a multiplier times 0 subtracted from 0 is still 0). Thus, we can mentally
ignore the first row and the first column and repeat the process on the smaller system.
With the second equation as the pivot equation, we compute for each remaining equation
(3 ! i ! n)






ai j ← ai j −
(

ai2

a22

)
a2 j (2 ! j ! n)

bi ← bi −
(

ai2

a22

)
b2

250 Chapter 7 Systems of Linear Equations

Just prior to the kth step in the forward elimination, the system will appear as follows:





a11 a12 a13 · · · · · · · · · a1n

0 a22 a23 · · · · · · · · · a2n

0 0 a33 · · · · · · · · · a3n
...

...
...

. . .
...

0 0 0 · · · akk · · · akj · · · akn
...

...
...

...
...

...
...

0 0 0 · · · aik · · · ai j · · · ain
...

...
...

...
...

...
...

0 0 0 · · · ank · · · anj · · · ann









x1

x2

x3
...

xk
...

xi
...

xn





=





b1

b2

b3
...

bk
...

bi
...

bn





Here, a wedge of 0 coefficients has been created, and the first k equations have been proc-
essed and are now fixed. Using the kth equation as the pivot equation, we select multipliers
to create 0’s as coefficients for each xi below the akk coefficient. Hence, we compute for
each remaining equation (k + 1 ! i ! n)






ai j ← ai j −
(

aik

akk

)
akj (k ! j ! n)

bi ← bi −
(

aik

akk

)
bk

Obviously, we must assume that all the divisors in this algorithm are nonzero.

Pseudocode
We now consider the pseudocode for forward elimination. The coefficient array is stored as
a double-subscripted array (ai j); the right-hand side of the system of equations is stored as
a single-subscripted array (bi); the solution is computed and stored in a single-subscripted
array (xi). It is easy to see that the following lines of pseudocode carry out the forward
elimination phase of naive Gaussian elimination:

integer i, j, k; real array (ai j)1:n×1:n, (bi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

for j = k to n do
ai j ← ai j − (aik/akk)akj

end for
bi ← bi − (aik/akk)bk

end for
end for

Since the multiplier aik/akk does not depend on j , it should be moved outside the j loop.
Notice also that the new values in column k will be 0, at least theoretically, because when

7.1 Naive Gaussian Elimination 251

j = k, we have

aik ← aik − (aik/akk)akk

Since we expect this to be 0, no purpose is served in computing it. The location where the 0
is being created is a good place to store the multiplier. If these remarks are put into practice,
the pseudocode will look like this:

integer i, j, k; real xmult; real array (ai j)1:n×1:n, (bi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

xmult ← aik/akk

aik ← xmult
for j = k + 1 to n do

ai j ← ai j − (xmult)akj

end for
bi ← bi − (xmult)bk

end for
end for

Here, the multipliers are stored because they are part of the LU-factorization that can be
useful in some applications. This matter is discussed in Section 8.1.

At the beginning of the back substitution phase, the linear system is of the form






a11x1 + a12x2 + a13x3 + · · · · · · + a1n xn = b1

a22x2 + a23x3 + · · · · · · + a2n xn = b2

a33x3 + · · · + a3n xn = b3

. . .
...

...

aii xi + ai,i+1xi+1 + · · · + ain xn = bi

. . .
...

...

an−1,n−1xn−1 + an−1,n xn = bn−1

ann xn = bn

where the ai j ’s and bi ’s are not the original ones from System (6) but instead are the ones
that have been altered by the elimination process.

The back substitution starts by solving the nth equation for xn:

xn = bn

ann

Then, using the (n − 1)th equation, we solve for xn−1:

xn−1 = 1
an−1,n−1

(
bn−1 − an−1,n xn

)

252 Chapter 7 Systems of Linear Equations

We continue working upward, recovering each xi by the formula

xi = 1
aii

(
bi −

n∑

j=i+1

ai j x j

)
(i = n − 1, n − 2, . . . , 1) (7)

Here is pseudocode to do this:

integer i, j, n; real sum; real array (ai j)1:n×1:n, (xi)1:n

xn ← bn/ann

for i = n − 1 to 1 step −1 do
sum ← bi

for j = i + 1 to n do
sum ← sum − ai j x j

end for
xi ← sum/aii

end for

Now we put these segments of pseudocode together to form a procedure, called Naive Gauss,
which is intended to solve a system of n linear equations in n unknowns by the method of
naive Gaussian elimination. This pseudocode serves a didactic purpose only; a more robust
pseudocode will be developed in the next section.

procedure Naive Gauss(n, (ai j), (bi), (xi))

integer i, j, k, n; real sum, xmult
real array (ai j)1:n×1:n, (bi)1:n, (xi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

xmult ← aik/akk

aik ← xmult
for j = k + 1 to n do

ai j ← ai j − (xmult)akj

end for
bi ← bi − (xmult)bk

end for
end for
xn ← bn/ann

for i = n − 1 to 1 step −1 do
sum ← bi

for j = i + 1 to n do
sum ← sum − ai j x j

end for
xi ← sum/aii

end for
end procedure Naive Gauss

7.1 Naive Gaussian Elimination 253

Before giving a test example, let us examine the crucial computation in our pseudocode,
namely, a triply nested for-loop containing a replacement operation:

for k · · · · · · · · · do
for i · · · · · · · · · do

for j · · · · · · · · · do
ai j ← ai j − (aik/akk)akj

end do
end do

end do

Here, we must expect all quantities to be infected with roundoff error. Such a roundoff error
in akj is multiplied by the factor (aik/akk). This factor is large if the pivot element |akk | is
small relative to |aik |. Hence, we conclude, tentatively, that small pivot elements lead to
large multipliers and to worse roundoff errors.

Testing the Pseudocode
One good way to test a procedure is to set up an artificial problem whose solution is known
beforehand. Sometimes the test problem will include a parameter that can be changed to
vary the difficulty. The next example illustrates this.

Fixing a value of n, define the polynomial

p(t) = 1 + t + t2 + · · · + tn−1 =
n∑

j=1

t j−1

The coefficients in this polynomial are all equal to 1. We shall try to recover these known
coefficients from n values of the polynomial. We use the values of p(t) at the integers t =
1+ i for i = 1, 2, . . . , n. If the coefficients in the polynomial are denoted by x1, x2, . . . , xn ,
we should have

n∑

j=1

(1 + i) j−1x j = 1
i

[
(1 + i)n − 1

]
(1 ! i ! n) (8)

Here, we have used the formula for the sum of a geometric series on the right-hand side;
that is,

p(1 + i) =
n∑

j=1

(1 + i) j−1 = (1 + i)n − 1
(1 + i) − 1

= 1
i

[
(1 + i)n − 1

]
(9)

Letting ai j = (1+ i) j−1 and bi = [(1+ i)n −1]/ i in Equation (8), we have a linear system.

EXAMPLE 1 We write a pseudocode for a specific test case that solves the system of Equation (8) for
various values of n.

Solution Since the naive Gaussian elimination procedure Naive Gauss can be used, all that is needed
is a calling program. We decide to use n = 4, 5, 6, 7, 8, 9, 10 for the test. Here is a

254 Chapter 7 Systems of Linear Equations

suitable pseudocode:

program Test NGE
integer parameter m ← 10
integer i, j, n; real array, (ai j)1:m×1:m, (bi)1:m, (xi)1:m

for n = 4 to 10 do
for i = 1 to n do

for j = 1 to n do
ai j ← (i + 1) j−1

end for
bi ← [(i + 1)n − 1]/ i

end for
call Naive Gauss(n, (ai j), (bi), (xi))

output n, (xi)1:n

end for
end program Test NGE

When this pseudocode was run on a machine that carries approximately seven decimal
digits of accuracy, the solution was obtained with complete precision until n reached 9, and
then the computed solution was worthless because one component exhibited a relative error
of 16,120%! (Write and run a computer program to see for yourself!) !

The coefficient matrix for this linear system is an example of a well-known ill-
conditioned matrix called the Vandermonde matrix, and this accounts for the fact that
the system cannot be solved accurately using naive Gaussian elimination. What is amazing
is that the trouble happens so suddenly! When n ! 9, the roundoff error that is present in
computing xi is propagated and magnified throughout the back substitution phase so that
most of the computed values for xi are worthless. Insert some intermediate print state-
ments in the code to see for yourself what is going on here. (See Gautschi [1990] for more
information on the Vandermonde matrix and its ill-conditioned nature.)

Residual and Error Vectors
For a linear system Ax = b having the true solution x and a computed solution x̃ , we define

e = x̃ − x error vector
r = Ax̃ − b residual vector

An important relationship between the error vector and the residual vector is

Ae = r

Suppose that two students using different computer systems solve the same linear
system, Ax = b. What algorithm and what precision each student used are not known.
Each vehemently claims to have the correct answer, but the two computer solutions x̃ and
x̂ are totally different! How do we determine which, if either, computed solution is correct?

We can check the solutions by substituting them into the original system, which is the
same as computing the residual vectors r̃ = Ax̃ − b and r̂ = Ax̂ − b. Of course, the

7.1 Naive Gaussian Elimination 255

computed solutions are not exact because each must contain some roundoff errors. So we
would want to accept the solution with the smaller residual vector. However, if we knew
the exact solution x, then we would just compare the computed solutions with the exact
solution, which is the same as computing the error vectors ẽ = x̃ − x and ê = x̂ − x. Now
the computed solution that produces the smaller error vector would most assuredly be the
better answer.

Since the exact solution is usually not known in applications, one would tend to accept
the computed solution that has the smaller residual vector. But this may not be the best
computed solution if the original problem is sensitive to roundoff errors—that is, is ill-
conditioned. In fact, the question of whether a computed solution to a linear system is a
good solution is extremely difficult and beyond the scope of this book. Problem 7.1.5 may
give some insight into the difficulty of assessing the accuracy of computed solutions of
linear systems.

Summary

(1) The basic forward elimination procedure using equation k to operate on equations k +
1, k + 2, . . . , n is

{
ai j ← ai j − (aik/akk)akj (k ! j ! n, k < i ! n)

bi ← bi − (aik/akk)bk

Here we assume akk #= 0. The basic back substitution procedure is

xi = 1
aii

(
bi −

n∑

j=i+1

ai j x j

)
(i = n − 1, n − 2, . . . , 1)

(2) When solving the linear system Ax = b, if the true or exact solution is x and the
approximate or computed solution is x̃, then important quantities are

error vectors e = x̃ − x
residual vectors r = Ax̃ − b

Problems 7.1

a1. Show that the system of equations





x1 + 4x2 + αx3 = 6
2x1 − x2 + 2αx3 = 3
αx1 + 3x2 + x3 = 5

possesses a unique solution when α = 0, no solution when α = −1, and infinitely
many solutions when α = 1. Also, investigate the corresponding situation when the
right-hand side is replaced by 0’s.

