
134 14. SYSTEMS OF LINEAR EQUATIONS

updated, costing one multiplication per entry or n � k multiplications to obtain
y(k). So to know y(n�1) costs another

n�1X

k=1

(n� k) = (n� 1)n/2

multiplications. We can say that the elimination part of the procedure costs a
grand total of O(n3) operations.

For the backsubstitution part another O(n2) multiplications/divisions are needed.
The computation of x

n

involves one division, and the computation of each previous
x
k

with 1 k < n involves n � k multiplications and one division, or in total
n(n+ 1)/2 to obtain the solution vector.

14.6 Residual versus error and stability.

While the condition number gives you a priori information on the quality of the
output of an algorithm, an a posteriori quality assessment can be performed by
computing either the error vector or the residual vector. Let the linear n ⇥ n
system Ax = y be given and let x̃ be the computed solution while x! denotes the
exact mathematical solution. Then the residual vector is defined by

r = y �Ax̃ (14.12)

while the error vector is given by

e = x! � x̃

It is clear that both measure di↵erent discrepancies and it is also clear that the
error can only be computed for test problems, problems which are used to formu-
late a recommendation or opinion about an algorithm. In real-life problems the
exact solution is not known. The error expresses how well the computed solution
approximates the true solution while the residual expresses how well the computed
solution satisfies the linear system of equations. This is quite a di↵erent thing.

Take for instance problem (14.1). Obtaining an approximation 2 + x(n)

1

for e that
is not close to e but satisfies the system of equations quite well, is of no help. On
the other hand, when a polynomial is subject to certain conditions that can be
formulated as a system of linear equations for its coe�cients, then there is no use in
obtaining accurate values for these coe�cients if they do not render the residual
small, since after all one is interested in the conditions being satisfied. That
either the residual or the error can be small while the other isn’t, is illustrated in
Example 14.1, where the vectors x̃(1) and x̃(2) are examined as candidate solution
vectors. The residual vectors are computed in F(10, 5, L, U).

14.6 RESIDUAL VERSUS ERROR AND BACKWARD STABILITY 135

Example 14.1

!
7.8000 5.6300
9.1300 6.5900

" !
x1

x2

"
=

!
2.1700
2.5400

"

÷x(1) =
!

+3 .4100! 10! 1

" 8.7000! 10! 2

"
÷x(2) =

!
+9 .9900! 10! 1

" 1.0000! 100

"

y " A ÷x(1) =
!

1.0000! 10! 5

3.0000! 10! 5

"
y " A ÷x(2) =

!
7.8000! 10! 3

9.1000! 10! 3

"

Looking only at the residuals, it is clear that solution ÷x(1) is to be preferred. In
this example, the exact mathematical solution isx? = (1 , " 1) and hence on the
basis of the error vectors, solution ÷x(2) is more suitable.

For Gaussian elimination with partial pivoting it can be proved, using a backward
error analysis, that the computed solution ÷x of Ax = y is actually the exact
solution of a slightly perturbed linear system

(A + E)÷x = y ||E ||" # c(n) ULP ||A||" + O(n3ULP2) (14.13)

Here

c(n) = 4 n3 max
i,j,k

|÷a(k)
ij

|
||A||"

where ÷A(k) is the computed version ofM
k

. . . M 1A. The above bound holds for
round to nearest; in directed rounding modes the upperbound in the right hand
side of (14.13) doubles. Thanks to the pivoting strategy, in practice

max
i,j,k

|÷a(k)
ij

|
||A||"

$ 10

while in theory this value can be as large as 2n! 1. So Gaussian elimination is not
provably stable.

In numerical terms (14.13) is the best one can expect, because this kind of e↵ect is
unavoidable and already occurs when rounding the entries ofA to their machine
representation, even before the algorithm has been started. Rounding each coe�-
cient a

ij

in the linear system to its nearest ßoating-point representation entails a
rounding error of

|%(a
ij

) " a
ij

| # 1/2 ULP |a
ij

|

Consequently
n#

i=1

|%(a
ij

) " a
ij

| # 1/2 ULP

n#

i=1

|a
ij

|

136 14. SYSTEMS OF LINEAR EQUATIONS

or
||� (A)�A||1 1/

2

ULP ||A||1 (14.14)

Let us analyze the role of the condition number (A) and its impact on the
computed solution x̃. To simplify the presentation we absorb the contribution
O(n3ULP2) into the constant c(n).

Theorem 14.1

If x? denotes the exact solution of the nonsingular linear system Ax =
y and if the computed solution x̃ of Ax = y satisfies

(A+ E)x̃ = y ||E|| c ULP ||A|| c ULP < 1/(A)

then the linear system (A+ E)x = y is nonsingular and

||x? � x̃|| c ULP (A)||x̃||

Proof: Were A+E singular, then one could find a nontrivial solution z of (A+
E)z = 0. In other words z = �A�1Ez and hence

||z|| ||A�1||c ULP ||A|| · ||z|| = c ULP (A)||z||

or 1 c ULP (A) which is a contradiction. If Ax? = y and (A+ E)x̃ = y then

A(x̃� x?) = �Ex̃

and hence

||x̃� x?|| ||A�1|| · ||E|| · ||x̃|| c ULP ||x̃||(A) X

In words, Theorem 14.1 roughly says that the almost unavoidable relative error of
c ULP on x? coming from (14.13), is blown up by a factor (A) during the solution
of the linear system Ax = y. Hence the condition number clearly influences the
quality of the output of the numeric algorithm.

Possible data errors when inputting the matrix A and vector y are bounded by
(14.14). Rounding errors are dealt with by the backward error analysis (14.13)
and Theorem 14.1. What about the truncation error when performing Gaussian
elimination with partial pivoting? It should be clear that while outlining the
LU decomposition and the pivoting strategy, we never introduced approximations
to the matrix A or the right hand side y. In each step the original linear system
Ax = y was being replaced by an equivalent linear system, not by an approximation
of the linear system of equations to be solved. Hence the LU decomposition and
Gaussian elimination with partial pivoting are numerical procedures that do not
introduce an additional truncation error. The only truncation error encountered
was e� e(n) due to approximating the infinite continued fraction representation of
e by e(n). Subsequently e(n) was obtained without extra truncation error.

The following result can be found and rounds up our stability discussion.

14.8 BENCHMARK PROBLEMS 137

Theorem 14.2

If A is a strictly diagonally dominant n⇥n matrix, then A is nonsin-
gular and Gaussian elimination without row or column interchanges
is numerically stable.

14.7 Matrix inversion.

When actually storing the multipliers m(k)

ij

used in Gaussian elimination with
partial pivoting, then an easy procedure for the inversion of the matrix A can be
based on its LU decomposition. Before we proceed we need to define permutation
matrices.

Definition 14.2

An n⇥n matrix P is called a permutation matrix if exactly one entry
in each row and column is equal to 1 and all other entries equal 0.

Multiplication of A by such a matrix e↵ects a permutation of the rows and columns
of A. It is easy to see that the product of permutation matrices is again a per-
mutation matrix and that for a permutation matrix P its inverse P�1 equals its
transpose PT .

In Section 14.5 we computed the LU decomposition of a permuted version of A.
Using a permutation matrix P we can say that

PA = LU (14.15)

From (14.15) we obtain that A�1 = U�1L�1P since A = PTLU . From Sec-
tion 14.3 we know that

L�1 = M
n�1

. . .M
1

Remains to compute U�1 from

U�1U = I

to finalize a 3-step procedure for the inversion of A. We emphasize that A�1 is
never computed to solve Ax = y for x? = A�1y. Rather the LU decomposition of
A is used to compute A�1.

14.8 Benchmark problems.

Benchmark problems for linear systems of equations are tricky problems of which
the solution is known a priori. Such a problem is given by

nX

j=1

a
ij

x
j

= y
i

a
ij

= (1 + i)j�1 y
i

=
(1 + i)n � 1

i
x
j

= 1

138 14. SYSTEMS OF LINEAR EQUATIONS

This problem comes from the closed summation formula

n�1X

j=0

qj =
qn � 1

q � 1
q = 1 + i

Other benchmark problems are

nX

j=1

✓
i+ j � 2

j � 1

◆
=

✓
n+ i� 1

i

◆
i = 1, . . . , n

involving the Pascal matrix P = (p
ij

) =
⇣�

i+j�2

j�1

�⌘
and

nX

j=1

1

i+ j � 1
= ! (n+ i)� ! (i) i = 1, . . . , n (14.16)

involving the Hilbert matrix H = (h
ij

) = (1

i+j�1

). Here ! (x) is the psi-function,

which is also called the digamma function. When computing " 1(H) using cond(H)
for increasing values of the dimension n, we find the values given in Table 14.1. So
the problem is increasingly ill-conditioned.

n " 1(A)

01 1.0⇥ 100

02 2.7⇥ 101

03 7.5⇥ 102

04 2.8⇥ 104

05 9.4⇥ 105

06 2.9⇥ 107

07 9.9⇥ 108

08 3.4⇥ 1010

09 1.1⇥ 1012

10 3.6⇥ 1013

11 1.2⇥ 1015

12 3.8⇥ 1016

Table 14.1
Conditioning of the benchmark problem (14.16).

When computing a floating-point approximation x̃ of the exact solution x! =
(1, . . . , 1)T of (14.16), using Gaussian elimination with partial pivoting, a rounding
error ||x̃� x! ||1 of the order of magnitude of

" 1(A) ULP

SUMMARY OF CHAPTER 14 139

should be considered normal, according toTheorem 14.1. So let us take a closer
look at

||÷x ! x! ||! / ||x! ||! = ||÷x ! x! ||! ||x! ||! = 1

in standard single and standard double arithmetic. TheULPis respectively given
by 2" 23 " 10" 7 and 2" 52 " 2.5 # 10" 16. A lower bound for the constant c in
Theorem 14.1 can be estimated from

||y ! H ÷x|| $ c ||A|| á ||÷x||ULP

n ! = 2 , t = 24 ! = 2 , t = 53

01 0.0 0.0
02 3.6 # 10" 7 6.7 # 10" 16

03 5.5 # 10" 6 1.0 # 10" 14

04 2.4 # 10" 5 6.1 # 10" 13

05 8.1 # 10" 3 6.2 # 10" 13

06 2.2 # 10" 1 5.3 # 10" 10

07 1.9 # 100 2.6 # 10" 08

08 3.6 # 100 4.2 # 10" 07

09 1.5 # 101 2.0 # 10" 05

10 1.2 # 101 3.2 # 10" 04

11 3.5 # 101 9.7 # 10" 03

12 1.1 # 102 3.6 # 10" 01

Table 14.2
Relative error of the solution computed withGEPP(A,x,y) .

Summary.

A measure of the conditioning of the linear system to be solved is given by
"
p

(A) = ||A||
p

á ||A" 1||
p

. The conditioning of the problem should be investi-
gated before or at last during its solution.

The technique of LU decomposition lies at the heart of the basic algorithm for
solving a linear system of equations. It can directly be applied to the solution
of su�ciently well-conditioned tridiagonal or bandstructured linear systems.
It uses the multipliers

! m(k)
ik

=
u(k" 1)
ik

u(k" 1)
kk

introduced in Section 14.3.

